Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification (1909.11316v1)

Published 25 Sep 2019 in cs.CV

Abstract: Person re-identification is the task of matching pedestrian images across non-overlapping cameras. In this paper, we propose a non-linear cross-view similarity metric learning for handling small size training data in practical re-ID systems. The method employs non-linear mappings combined with cross-view discriminative subspace learning and cross-view distance metric learning based on pairwise similarity constraints. It is a natural extension of XQDA from linear to non-linear mappings using kernels, and learns non-linear transformations for efficiently handling complex non-linearity of person appearance across camera views. Importantly, the proposed method is very computationally efficient. Extensive experiments on four challenging datasets shows that our method attains competitive performance against state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.