Online Semi-Supervised Concept Drift Detection with Density Estimation (1909.11251v2)
Abstract: Concept drift is formally defined as the change in joint distribution of a set of input variables X and a target variable y. The two types of drift that are extensively studied are real drift and virtual drift where the former is the change in posterior probabilities p(y|X) while the latter is the change in distribution of X without affecting the posterior probabilities. Many approaches on concept drift detection either assume full availability of data labels, y or handle only the virtual drift. In a streaming environment, the assumption of full availability of data labels, y is questioned. On the other hand, approaches that deal with virtual drift failed to address real drift. Rather than improving the state-of-the-art methods, this paper presents a semi-supervised framework to deal with the challenges above. The objective of the proposed framework is to learn from streaming environment with limited data labels, y and detect real drift concurrently. This paper proposes a novel concept drift detection method utilizing the densities of posterior probabilities in partially labeled streaming environments. Experimental results on both synthetic and realworld datasets show that our proposed semi-supervised framework enables the detection of concept drift in such environment while achieving comparable prediction performance to the state-of-the-art methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.