Neural Generative Rhetorical Structure Parsing (1909.11049v1)
Abstract: Rhetorical structure trees have been shown to be useful for several document-level tasks including summarization and document classification. Previous approaches to RST parsing have used discriminative models; however, these are less sample efficient than generative models, and RST parsing datasets are typically small. In this paper, we present the first generative model for RST parsing. Our model is a document-level RNN grammar (RNNG) with a bottom-up traversal order. We show that, for our parser's traversal order, previous beam search algorithms for RNNGs have a left-branching bias which is ill-suited for RST parsing. We develop a novel beam search algorithm that keeps track of both structure- and word-generating actions without exhibiting this branching bias and results in absolute improvements of 6.8 and 2.9 on unlabelled and labelled F1 over previous algorithms. Overall, our generative model outperforms a discriminative model with the same features by 2.6 F1 points and achieves performance comparable to the state-of-the-art, outperforming all published parsers from a recent replication study that do not use additional training data.
- Amandla Mabona (1 paper)
- Laura Rimell (13 papers)
- Stephen Clark (38 papers)
- Andreas Vlachos (70 papers)