Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Posture and sequence recognition for Bharatanatyam dance performances using machine learning approach (1909.11023v1)

Published 24 Sep 2019 in cs.CV, cs.LG, and cs.MM

Abstract: Understanding the underlying semantics of performing arts like dance is a challenging task. Dance is multimedia in nature and spans over time as well as space. Capturing and analyzing the multimedia content of the dance is useful for the preservation of cultural heritage, to build video recommendation systems, to assist learners to use tutoring systems. To develop an application for dance, three aspects of dance analysis need to be addressed: 1) Segmentation of the dance video to find the representative action elements, 2) Matching or recognition of the detected action elements, and 3) Recognition of the dance sequences formed by combining a number of action elements under certain rules. This paper attempts to solve three fundamental problems of dance analysis for understanding the underlying semantics of dance forms. Our focus is on an Indian Classical Dance (ICD) form known as Bharatanatyam. As dance is driven by music, we use the music as well as motion information for key posture extraction. Next, we recognize the key postures using machine learning as well as deep learning techniques. Finally, the dance sequence is recognized using the Hidden Markov Model (HMM). We capture the multi-modal data of Bharatanatyam dance using Kinect and build an annotated data set for research in ICD.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.