Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

First Order Methods For Globally Optimal Distributed Controllers Beyond Quadratic Invariance (1909.10999v1)

Published 24 Sep 2019 in eess.SY, cs.SY, and math.OC

Abstract: We study the distributed Linear Quadratic Gaussian (LQG) control problem in discrete-time and finite-horizon, where the controller depends linearly on the history of the outputs and it is required to lie in a given subspace, e.g. to possess a certain sparsity pattern. It is well-known that this problem can be solved with convex programming within the Youla domain if and only if a condition known as Quadratic Invariance (QI) holds. In this paper, we first show that given QI sparsity constraints, one can directly descend the gradient of the cost function within the domain of output-feedback controllers and converge to a global optimum. Note that convergence is guaranteed despite non-convexity of the cost function. Second, we characterize a class of Uniquely Stationary (US) problems, for which first-order methods are guaranteed to converge to a global optimum. We show that the class of US problems is strictly larger than that of strongly QI problems and that it is not included in that of QI problems. We refer to Figure 1 for details. Finally, we propose a tractable test for the US property.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.