Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

First Order Methods For Globally Optimal Distributed Controllers Beyond Quadratic Invariance (1909.10999v1)

Published 24 Sep 2019 in eess.SY, cs.SY, and math.OC

Abstract: We study the distributed Linear Quadratic Gaussian (LQG) control problem in discrete-time and finite-horizon, where the controller depends linearly on the history of the outputs and it is required to lie in a given subspace, e.g. to possess a certain sparsity pattern. It is well-known that this problem can be solved with convex programming within the Youla domain if and only if a condition known as Quadratic Invariance (QI) holds. In this paper, we first show that given QI sparsity constraints, one can directly descend the gradient of the cost function within the domain of output-feedback controllers and converge to a global optimum. Note that convergence is guaranteed despite non-convexity of the cost function. Second, we characterize a class of Uniquely Stationary (US) problems, for which first-order methods are guaranteed to converge to a global optimum. We show that the class of US problems is strictly larger than that of strongly QI problems and that it is not included in that of QI problems. We refer to Figure 1 for details. Finally, we propose a tractable test for the US property.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.