Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Code-switching Language Modeling With Bilingual Word Embeddings: A Case Study for Egyptian Arabic-English (1909.10892v1)

Published 24 Sep 2019 in cs.CL

Abstract: Code-switching (CS) is a widespread phenomenon among bilingual and multilingual societies. The lack of CS resources hinders the performance of many NLP tasks. In this work, we explore the potential use of bilingual word embeddings for code-switching (CS) LLMing (LM) in the low resource Egyptian Arabic-English language. We evaluate different state-of-the-art bilingual word embeddings approaches that require cross-lingual resources at different levels and propose an innovative but simple approach that jointly learns bilingual word representations without the use of any parallel data, relying only on monolingual and a small amount of CS data. While all representations improve CS LM, ours performs the best and improves perplexity 33.5% relative over the baseline.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.