Papers
Topics
Authors
Recent
2000 character limit reached

Temporal-Coded Deep Spiking Neural Network with Easy Training and Robust Performance (1909.10837v5)

Published 24 Sep 2019 in cs.CV, cs.NE, and eess.IV

Abstract: Spiking neural network (SNN) is interesting both theoretically and practically because of its strong bio-inspiration nature and potentially outstanding energy efficiency. Unfortunately, its development has fallen far behind the conventional deep neural network (DNN), mainly because of difficult training and lack of widely accepted hardware experiment platforms. In this paper, we show that a deep temporal-coded SNN can be trained easily and directly over the benchmark datasets CIFAR10 and ImageNet, with testing accuracy within 1% of the DNN of equivalent size and architecture. Training becomes similar to DNN thanks to the closed-form solution to the spiking waveform dynamics. Considering that SNNs should be implemented in practical neuromorphic hardwares, we train the deep SNN with weights quantized to 8, 4, 2 bits and with weights perturbed by random noise to demonstrate its robustness in practical applications. In addition, we develop a phase-domain signal processing circuit schematic to implement our spiking neuron with 90% gain of energy efficiency over existing work. This paper demonstrates that the temporal-coded deep SNN is feasible for applications with high performance and high energy efficient.

Citations (86)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.