Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Temporal-Coded Deep Spiking Neural Network with Easy Training and Robust Performance (1909.10837v5)

Published 24 Sep 2019 in cs.CV, cs.NE, and eess.IV

Abstract: Spiking neural network (SNN) is interesting both theoretically and practically because of its strong bio-inspiration nature and potentially outstanding energy efficiency. Unfortunately, its development has fallen far behind the conventional deep neural network (DNN), mainly because of difficult training and lack of widely accepted hardware experiment platforms. In this paper, we show that a deep temporal-coded SNN can be trained easily and directly over the benchmark datasets CIFAR10 and ImageNet, with testing accuracy within 1% of the DNN of equivalent size and architecture. Training becomes similar to DNN thanks to the closed-form solution to the spiking waveform dynamics. Considering that SNNs should be implemented in practical neuromorphic hardwares, we train the deep SNN with weights quantized to 8, 4, 2 bits and with weights perturbed by random noise to demonstrate its robustness in practical applications. In addition, we develop a phase-domain signal processing circuit schematic to implement our spiking neuron with 90% gain of energy efficiency over existing work. This paper demonstrates that the temporal-coded deep SNN is feasible for applications with high performance and high energy efficient.

Citations (86)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.