Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Analysis of a Model for Generating Weakly Scale-free Networks (1909.10719v4)

Published 24 Sep 2019 in cs.DS, cs.SI, and physics.soc-ph

Abstract: It is commonly believed that real networks are scale-free and fraction of nodes $P(k)$ with degree $k$ satisfies the power law $P(k) \propto k{-\gamma} \text{ for } k > k_{min} > 0$. Preferential attachment is the mechanism that has been considered responsible for such organization of these networks. In many real networks, degree distribution before the $k_{min}$ varies very slowly to the extent of being uniform as compared with the degree distribution for $k > k_{min}$ . In this paper, we proposed a model that describe this particular degree distribution for the whole range of $k>0$. We adopt a two step approach. In the first step, at every time stamp we add a new node to the network and attach it with an existing node using preferential attachment method. In the second step, we add edges between existing pairs of nodes with the node selection based on the uniform probability distribution. Our approach generates weakly scale-free networks that closely follow the degree distribution of real-world networks. We perform comprehensive mathematical analysis of the model in the discrete domain and compare the degree distribution generated by these models with that of real-world networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.