Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Theory of Uncertainty Variables for State Estimation and Inference (1909.10673v2)

Published 24 Sep 2019 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We develop a new framework of uncertainty variables to model uncertainty. An uncertainty variable is characterized by an uncertainty set, in which its realization is bound to lie, while the conditional uncertainty is characterized by a set map, from a given realization of a variable to a set of possible realizations of another variable. We prove Bayes' law and the law of total probability equivalents for uncertainty variables. We define a notion of independence, conditional independence, and pairwise independence for a collection of uncertainty variables, and show that this new notion of independence preserves the properties of independence defined over random variables. We then develop a graphical model, namely Bayesian uncertainty network, a Bayesian network equivalent defined over a collection of uncertainty variables, and show that all the natural conditional independence properties, expected out of a Bayesian network, hold for the Bayesian uncertainty network. We also define the notion of point estimate, and show its relation with the maximum a posteriori estimate. Probability theory starts with a distribution function (equivalently a probability measure) as a primitive and builds all other useful concepts, such as law of total probability, Bayes' law, independence, graphical models, point estimate, on it. Our work shows that it is perfectly possible to start with a set, instead of a distribution function, and retain all the useful ideas needed for state estimation and inference.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube