Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Geometry, Computation, and Optimality in Stochastic Optimization (1909.10455v3)

Published 23 Sep 2019 in math.OC, cs.IT, cs.LG, math.IT, and stat.ML

Abstract: We study computational and statistical consequences of problem geometry in stochastic and online optimization. By focusing on constraint set and gradient geometry, we characterize the problem families for which stochastic- and adaptive-gradient methods are (minimax) optimal and, conversely, when nonlinear updates -- such as those mirror descent employs -- are necessary for optimal convergence. When the constraint set is quadratically convex, diagonally pre-conditioned stochastic gradient methods are minimax optimal. We provide quantitative converses showing that the ``distance'' of the underlying constraints from quadratic convexity determines the sub-optimality of subgradient methods. These results apply, for example, to any $\ell_p$-ball for $p < 2$, and the computation/accuracy tradeoffs they demonstrate exhibit a striking analogy to those in Gaussian sequence models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube