Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Model-Based and Data-Driven Strategies in Medical Image Computing (1909.10391v3)

Published 23 Sep 2019 in cs.CV

Abstract: Model-based approaches for image reconstruction, analysis and interpretation have made significant progress over the last decades. Many of these approaches are based on either mathematical, physical or biological models. A challenge for these approaches is the modelling of the underlying processes (e.g. the physics of image acquisition or the patho-physiology of a disease) with appropriate levels of detail and realism. With the availability of large amounts of imaging data and machine learning (in particular deep learning) techniques, data-driven approaches have become more widespread for use in different tasks in reconstruction, analysis and interpretation. These approaches learn statistical models directly from labelled or unlabeled image data and have been shown to be very powerful for extracting clinically useful information from medical imaging. While these data-driven approaches often outperform traditional model-based approaches, their clinical deployment often poses challenges in terms of robustness, generalization ability and interpretability. In this article, we discuss what developments have motivated the shift from model-based approaches towards data-driven strategies and what potential problems are associated with the move towards purely data-driven approaches, in particular deep learning. We also discuss some of the open challenges for data-driven approaches, e.g. generalization to new unseen data (e.g. transfer learning), robustness to adversarial attacks and interpretability. Finally, we conclude with a discussion on how these approaches may lead to the development of more closely coupled imaging pipelines that are optimized in an end-to-end fashion.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.