Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Manifold Fitting under Unbounded Noise (1909.10228v3)

Published 23 Sep 2019 in stat.ML and cs.LG

Abstract: There has been an emerging trend in non-Euclidean statistical analysis of aiming to recover a low dimensional structure, namely a manifold, underlying the high dimensional data. Recovering the manifold requires the noise to be of certain concentration. Existing methods address this problem by constructing an approximated manifold based on the tangent space estimation at each sample point. Although theoretical convergence for these methods is guaranteed, either the samples are noiseless or the noise is bounded. However, if the noise is unbounded, which is a common scenario, the tangent space estimation at the noisy samples will be blurred. Fitting a manifold from the blurred tangent space might increase the inaccuracy. In this paper, we introduce a new manifold-fitting method, by which the output manifold is constructed by directly estimating the tangent spaces at the projected points on the underlying manifold, rather than at the sample points, to decrease the error caused by the noise. Assuming the noise is unbounded, our new method provides theoretical convergence in high probability, in terms of the upper bound of the distance between the estimated and underlying manifold. The smoothness of the estimated manifold is also evaluated by bounding the supremum of twice difference above. Numerical simulations are provided to validate our theoretical findings and demonstrate the advantages of our method over other relevant manifold fitting methods. Finally, our method is applied to real data examples.

Citations (9)

Summary

We haven't generated a summary for this paper yet.