Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Coupled Spatial-temporal Attention for Skeleton-based Action Recognition (1909.10214v1)

Published 23 Sep 2019 in cs.CV

Abstract: In this paper, we propose a coupled spatial-temporal attention (CSTA) model for skeleton-based action recognition, which aims to figure out the most discriminative joints and frames in spatial and temporal domains simultaneously. Conventional approaches usually consider all the joints or frames in a skeletal sequence equally important, which are unrobust to ambiguous and redundant information. To address this, we first learn two sets of weights for different joints and frames through two subnetworks respectively, which enable the model to have the ability of "paying attention to" the relatively informative section. Then, we calculate the cross product based on the weights of joints and frames for the coupled spatial-temporal attention. Moreover, our CSTA mechanisms can be easily plugged into existing hierarchical CNN models (CSTA-CNN) to realize their function. Extensive experimental results on the recently collected UESTC dataset and the currently largest NTU dataset have shown the effectiveness of our proposed method for skeleton-based action recognition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jiayun Wang (21 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.