Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Syntax-Aware Aspect-Level Sentiment Classification with Proximity-Weighted Convolution Network (1909.10171v1)

Published 23 Sep 2019 in cs.CL

Abstract: It has been widely accepted that Long Short-Term Memory (LSTM) network, coupled with attention mechanism and memory module, is useful for aspect-level sentiment classification. However, existing approaches largely rely on the modelling of semantic relatedness of an aspect with its context words, while to some extent ignore their syntactic dependencies within sentences. Consequently, this may lead to an undesirable result that the aspect attends on contextual words that are descriptive of other aspects. In this paper, we propose a proximity-weighted convolution network to offer an aspect-specific syntax-aware representation of contexts. In particular, two ways of determining proximity weight are explored, namely position proximity and dependency proximity. The representation is primarily abstracted by a bidirectional LSTM architecture and further enhanced by a proximity-weighted convolution. Experiments conducted on the SemEval 2014 benchmark demonstrate the effectiveness of our proposed approach compared with a range of state-of-the-art models.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.