Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Knapsack Problems with a Resource Buffer (1909.10016v1)

Published 22 Sep 2019 in cs.DS

Abstract: In this paper, we introduce online knapsack problems with a resource buffer. In the problems, we are given a knapsack with capacity $1$, a buffer with capacity $R\ge 1$, and items that arrive one by one. Each arriving item has to be taken into the buffer or discarded on its arrival irrevocably. When every item has arrived, we transfer a subset of items in the current buffer into the knapsack. Our goal is to maximize the total value of the items in the knapsack. We consider four variants depending on whether items in the buffer are removable (i.e., we can remove items in the buffer) or non-removable, and proportional (i.e., the value of each item is proportional to its size) or general. For the general&non-removable case, we observe that no constant competitive algorithm exists for any $R\ge 1$. For the proportional&non-removable case, we show that a simple greedy algorithm is optimal for every $R\ge 1$. For the general&removable and the proportional&removable cases, we present optimal algorithms for small $R$ and give asymptotically nearly optimal algorithms for general $R$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.