Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Variational Conditional GAN for Fine-grained Controllable Image Generation (1909.09979v1)

Published 22 Sep 2019 in cs.CV

Abstract: In this paper, we propose a novel variational generator framework for conditional GANs to catch semantic details for improving the generation quality and diversity. Traditional generators in conditional GANs simply concatenate the conditional vector with the noise as the input representation, which is directly employed for upsampling operations. However, the hidden condition information is not fully exploited, especially when the input is a class label. Therefore, we introduce a variational inference into the generator to infer the posterior of latent variable only from the conditional input, which helps achieve a variable augmented representation for image generation. Qualitative and quantitative experimental results show that the proposed method outperforms the state-of-the-art approaches and achieves the realistic controllable images.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.