Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Nonlocal Patches based Gaussian Mixture Model for Image Inpainting (1909.09932v1)

Published 22 Sep 2019 in cs.CV

Abstract: We consider the inpainting problem for noisy images. It is very challenge to suppress noise when image inpainting is processed. An image patches based nonlocal variational method is proposed to simultaneously inpainting and denoising in this paper. Our approach is developed on an assumption that the small image patches should be obeyed a distribution which can be described by a high dimension Gaussian Mixture Model. By a maximum a posteriori (MAP) estimation, we formulate a new regularization term according to the log-likelihood function of the mixture model. To optimize this regularization term efficiently, we adopt the idea of the Expectation Maximum (EM) algorithm. In which, the expectation step can give an adaptive weighting function which can be regarded as a nonlocal connections among pixels. Using this fact, we built a framework for non-local image inpainting under noise. Moreover, we mathematically prove the existence of minimizer for the proposed inpainting model. By using a spitting algorithm, the proposed model are able to realize image inpainting and denoising simultaneously. Numerical results show that the proposed method can produce impressive reconstructed results when the inpainting region is rather large.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.