Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On the Price of Anarchy for High-Price Links (1909.09799v1)

Published 21 Sep 2019 in cs.GT

Abstract: We study Nash equilibria and the price of anarchy in the classic model of Network Creation Games introduced by Fabrikant, Luthra, Maneva, Papadimitriou and Shenker in 2003. This is a selfish network creation model where players correspond to nodes in a network and each of them can create links to the other $n-1$ players at a prefixed price $\alpha > 0$. The player's goal is to minimise the sum of her cost buying edges and her cost for using the resulting network. One of the main conjectures for this model states that the price of anarchy, i.e. the relative cost of the lack of coordination, is constant for all $\alpha$. This conjecture has been confirmed for $\alpha = O(n{1-\delta})$ with $\delta \geq 1/\log n$ and for $\alpha > 4n-13$. The best known upper bound on the price of anarchy for the remaining range is $2{O(\sqrt{\log n})}$. We give new insights into the structure of the Nash equilibria for $\alpha > n$ and we enlarge the range of the parameter $\alpha$ for which the price of anarchy is constant. Specifically, we prove that for any small $\epsilon>0$, the price of anarchy is constant for $\alpha > n(1+\epsilon)$ by showing that any biconnected component of any non-trivial Nash equilibrium, if it exists, has at most a constant number of nodes.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.