Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Retrofitting Contextualized Word Embeddings with Paraphrases (1909.09700v1)

Published 12 Sep 2019 in cs.CL and cs.AI

Abstract: Contextualized word embedding models, such as ELMo, generate meaningful representations of words and their context. These models have been shown to have a great impact on downstream applications. However, in many cases, the contextualized embedding of a word changes drastically when the context is paraphrased. As a result, the downstream model is not robust to paraphrasing and other linguistic variations. To enhance the stability of contextualized word embedding models, we propose an approach to retrofitting contextualized embedding models with paraphrase contexts. Our method learns an orthogonal transformation on the input space, which seeks to minimize the variance of word representations on paraphrased contexts. Experiments show that the retrofitted model significantly outperforms the original ELMo on various sentence classification and language inference tasks.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.