An inversion formula with hypergeometric polynomials and application to singular integral operators (1909.09694v1)
Abstract: Given parameters $x \notin \mathbb{R}- \cup {1}$ and $\nu$, $\mathrm{Re}(\nu) < 0$, and the space $\mathscr{H}0$ of entire functions in $\mathbb{C}$ vanishing at $0$, we consider the family of operators $\mathfrak{L} = c_0 \cdot \delta \circ \mathfrak{M}$ with constant $c_0 = \nu(1-\nu)x/(1-x)$, $\delta = z \, \mathrm{d}/\mathrm{d}z$ and integral operator $\mathfrak{M}$ defined by $$ \mathfrak{M}f(z) = \int_01 e{- \frac{z}{x}t{-\nu}(1-(1-x)t)} \, f \left ( \frac{z}{x} \, t{-\nu}(1-t) \right ) \, \frac{\mathrm{d}t}{t}, \qquad z \in \mathbb{C}, $$ for all $f \in \mathscr{H}_0$. Inverting $\mathfrak{L}$ or $\mathfrak{M}$ proves equivalent to solve a singular Volterra equation of the first kind. The inversion of operator $\mathfrak{L}$ on $\mathscr{H}_0$ leads us to derive a new class of linear inversion formulas $T = A(x,\nu) \cdot S \Leftrightarrow S = B(x,\nu) \cdot T$ between sequences $S = (S_n){n \in \mathbb{N}*}$ and $T = (T_n){n \in \mathbb{N}*}$, where the infinite lower-triangular matrix $A(x,\nu)$ and its inverse $B(x,\nu)$ involve Hypergeometric polynomials $F(\cdot)$, namely $$ \left{ \begin{array}{ll} A{n,k}(x,\nu) = \displaystyle (-1)k\binom{n}{k}F(k-n,-n\nu;-n;x), B_{n,k}(x,\nu) = \displaystyle (-1)k\binom{n}{k}F(k-n,k\nu;k;x) \end{array} \right. $$ for $1 \leqslant k \leqslant n$. Functional relations between the ordinary (resp. exponential) generating functions of the related sequences $S$ and $T$ are also given. These relations finally enable us to derive the integral representation $$ \mathfrak{L}{-1}f(z) = \frac{1-x}{2i\pi x} \, e{z} \int_{(0+)}1 \frac{e{-xtz}}{t(1-t)} \, f \left ( xz \, (-t){\nu}(1-t){1-\nu} \right ) \, \mathrm{d}t, \quad z \in \mathbb{C}, $$ for the inverse $\mathfrak{L}{-1}$ of operator $\mathfrak{L}$ on $\mathscr{H}_0$, where the integration contour encircles the point 0.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.