Emergent Mind

Abstract

Given parameters $x \notin \mathbb{R}- \cup {1}$ and $\nu$, $\mathrm{Re}(\nu) < 0$, and the space $\mathscr{H}0$ of entire functions in $\mathbb{C}$ vanishing at $0$, we consider the family of operators $\mathfrak{L} = c0 \cdot \delta \circ \mathfrak{M}$ with constant $c0 = \nu(1-\nu)x/(1-x)$, $\delta = z \, \mathrm{d}/\mathrm{d}z$ and integral operator $\mathfrak{M}$ defined by $$ \mathfrak{M}f(z) = \int01 e{- \frac{z}{x}t{-\nu}(1-(1-x)t)} \, f \left ( \frac{z}{x} \, t{-\nu}(1-t) \right ) \, \frac{\mathrm{d}t}{t}, \qquad z \in \mathbb{C}, $$ for all $f \in \mathscr{H}0$. Inverting $\mathfrak{L}$ or $\mathfrak{M}$ proves equivalent to solve a singular Volterra equation of the first kind. The inversion of operator $\mathfrak{L}$ on $\mathscr{H}0$ leads us to derive a new class of linear inversion formulas $T = A(x,\nu) \cdot S \Leftrightarrow S = B(x,\nu) \cdot T$ between sequences $S = (Sn){n \in \mathbb{N}*}$ and $T = (Tn){n \in \mathbb{N}*}$, where the infinite lower-triangular matrix $A(x,\nu)$ and its inverse $B(x,\nu)$ involve Hypergeometric polynomials $F(\cdot)$, namely $$ \left{ \begin{array}{ll} A{n,k}(x,\nu) = \displaystyle (-1)k\binom{n}{k}F(k-n,-n\nu;-n;x), B{n,k}(x,\nu) = \displaystyle (-1)k\binom{n}{k}F(k-n,k\nu;k;x) \end{array} \right. $$ for $1 \leqslant k \leqslant n$. Functional relations between the ordinary (resp. exponential) generating functions of the related sequences $S$ and $T$ are also given. These relations finally enable us to derive the integral representation $$ \mathfrak{L}{-1}f(z) = \frac{1-x}{2i\pi x} \, e{z} \int{(0+)}1 \frac{e{-xtz}}{t(1-t)} \, f \left ( xz \, (-t){\nu}(1-t){1-\nu} \right ) \, \mathrm{d}t, \quad z \in \mathbb{C}, $$ for the inverse $\mathfrak{L}{-1}$ of operator $\mathfrak{L}$ on $\mathscr{H}0$, where the integration contour encircles the point 0.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.