Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metric-Based Few-Shot Learning for Video Action Recognition (1909.09602v1)

Published 14 Sep 2019 in cs.CV, cs.LG, and stat.ML

Abstract: In the few-shot scenario, a learner must effectively generalize to unseen classes given a small support set of labeled examples. While a relatively large amount of research has gone into few-shot learning for image classification, little work has been done on few-shot video classification. In this work, we address the task of few-shot video action recognition with a set of two-stream models. We evaluate the performance of a set of convolutional and recurrent neural network video encoder architectures used in conjunction with three popular metric-based few-shot algorithms. We train and evaluate using a few-shot split of the Kinetics 600 dataset. Our experiments confirm the importance of the two-stream setup, and find prototypical networks and pooled long short-term memory network embeddings to give the best performance as few-shot method and video encoder, respectively. For a 5-shot 5-way task, this setup obtains 84.2% accuracy on the test set and 59.4% on a special "challenge" test set, composed of highly confusable classes.

Citations (22)

Summary

We haven't generated a summary for this paper yet.