Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fine-grained Action Segmentation using the Semi-Supervised Action GAN (1909.09269v1)

Published 20 Sep 2019 in cs.CV

Abstract: In this paper we address the problem of continuous fine-grained action segmentation, in which multiple actions are present in an unsegmented video stream. The challenge for this task lies in the need to represent the hierarchical nature of the actions and to detect the transitions between actions, allowing us to localise the actions within the video effectively. We propose a novel recurrent semi-supervised Generative Adversarial Network (GAN) model for continuous fine-grained human action segmentation. Temporal context information is captured via a novel Gated Context Extractor (GCE) module, composed of gated attention units, that directs the queued context information through the generator model, for enhanced action segmentation. The GAN is made to learn features in a semi-supervised manner, enabling the model to perform action classification jointly with the standard, unsupervised, GAN learning procedure. We perform extensive evaluations on different architectural variants to demonstrate the importance of the proposed network architecture, and show that it is capable of outperforming current state-of-the-art on three challenging datasets: 50 Salads, MERL Shopping and Georgia Tech Egocentric Activities dataset.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.