Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Comparing distributions: $\ell_1$ geometry improves kernel two-sample testing (1909.09264v2)

Published 19 Sep 2019 in stat.ML and cs.LG

Abstract: Are two sets of observations drawn from the same distribution? This problem is a two-sample test. Kernel methods lead to many appealing properties. Indeed state-of-the-art approaches use the $L2$ distance between kernel-based distribution representatives to derive their test statistics. Here, we show that $Lp$ distances (with $p\geq 1$) between these distribution representatives give metrics on the space of distributions that are well-behaved to detect differences between distributions as they metrize the weak convergence. Moreover, for analytic kernels, we show that the $L1$ geometry gives improved testing power for scalable computational procedures. Specifically, we derive a finite dimensional approximation of the metric given as the $\ell_1$ norm of a vector which captures differences of expectations of analytic functions evaluated at spatial locations or frequencies (i.e, features). The features can be chosen to maximize the differences of the distributions and give interpretable indications of how they differs. Using an $\ell_1$ norm gives better detection because differences between representatives are dense as we use analytic kernels (non-zero almost everywhere). The tests are consistent, while much faster than state-of-the-art quadratic-time kernel-based tests. Experiments on artificial and real-world problems demonstrate improved power/time tradeoff than the state of the art, based on $\ell_2$ norms, and in some cases, better outright power than even the most expensive quadratic-time tests.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.