Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Improved Variational Neural Machine Translation by Promoting Mutual Information (1909.09237v1)

Published 19 Sep 2019 in cs.CL

Abstract: Posterior collapse plagues VAEs for text, especially for conditional text generation with strong autoregressive decoders. In this work, we address this problem in variational neural machine translation by explicitly promoting mutual information between the latent variables and the data. Our model extends the conditional variational autoencoder (CVAE) with two new ingredients: first, we propose a modified evidence lower bound (ELBO) objective which explicitly promotes mutual information; second, we regularize the probabilities of the decoder by mixing an auxiliary factorized distribution which is directly predicted by the latent variables. We present empirical results on the Transformer architecture and show the proposed model effectively addressed posterior collapse: latent variables are no longer ignored in the presence of powerful decoder. As a result, the proposed model yields improved translation quality while demonstrating superior performance in terms of data efficiency and robustness.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.