Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Finite-Volume approximation of the invariant measure of a viscous stochastic scalar conservation law (1909.08899v3)

Published 19 Sep 2019 in math.AP, cs.NA, math.NA, and math.PR

Abstract: We study the numerical approximation of the invariant measure of a viscous scalar conservation law, one-dimensional and periodic in the space variable, and stochastically forced with a white-in-time but spatially correlated noise. The flux function is assumed to be locally Lipschitz continuous and to have at most polynomial growth. The numerical scheme we employ discretises the SPDE according to a finite-volume method in space, and a split-step backward Euler method in time. As a first result, we prove the well-posedness as well as the existence and uniqueness of an invariant measure for both the semi-discrete and the split-step scheme. Our main result is then the convergence of the invariant measures of the discrete approximations, as the space and time steps go to zero, towards the invariant measure of the SPDE, with respect to the second-order Wasserstein distance. We investigate rates of convergence theoretically, in the case where the flux function is globally Lipschitz continuous with a small Lipschitz constant, and numerically for the Burgers equation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.