Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost Everywhere Generalized Phase Retrieval (1909.08874v1)

Published 19 Sep 2019 in math.FA, cs.IT, math.AG, and math.IT

Abstract: The aim of generalized phase retrieval is to recover $\mathbf{x}\in \mathbb{F}d$ from the quadratic measurements $\mathbf{x}*A_1\mathbf{x},\ldots,\mathbf{x}*A_N\mathbf{x}$, where $A_j\in \mathbf{H}d(\mathbb{F})$ and $\mathbb{F}=\mathbb{R}$ or $\mathbb{C}$. In this paper, we study the matrix set $\mathcal{A}=(A_j){j=1}N$ which has the almost everywhere phase retrieval property. For the case $\mathbb{F}=\mathbb{R}$, we show that $N\geq d+1$ generic matrices with prescribed ranks have almost everywhere phase retrieval property. We also extend this result to the case where $A_1,\ldots,A_N$ are orthogonal matrices and hence establish the almost everywhere phase retrieval property for the fusion frame phase retrieval. For the case where $\mathbb{F}=\mathbb{C}$, we obtain similar results under the assumption of $N\geq 2d$. We lower the measurement number $d+1$ (resp. $2d$) with showing that there exist $N=d$ (resp. $2d-1$) matrices $A_1,\ldots, A_N\in \mathbf{H}_d(\mathbb{R})$ (resp. $\mathbf{H}_d(\mathbb{C})$) which have the almost everywhere phase retrieval property. Our results are an extension of almost everywhere phase retrieval from the standard phase retrieval to the general setting and the proofs are often based on some new ideas about determinant variety.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Meng Huang (30 papers)
  2. Yi Rong (12 papers)
  3. Yang Wang (672 papers)
  4. Zhiqiang Xu (88 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.