Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

How Additional Knowledge can Improve Natural Language Commonsense Question Answering? (1909.08855v3)

Published 19 Sep 2019 in cs.CL, cs.IR, and cs.LG

Abstract: Recently several datasets have been proposed to encourage research in Question Answering domains where commonsense knowledge is expected to play an important role. Recent LLMs such as ROBERTA, BERT and GPT that have been pre-trained on Wikipedia articles and books have shown reasonable performance with little fine-tuning on several such Multiple Choice Question-Answering (MCQ) datasets. Our goal in this work is to develop methods to incorporate additional (commonsense) knowledge into LLM-based approaches for better question-answering in such domains. In this work, we first categorize external knowledge sources, and show performance does improve on using such sources. We then explore three different strategies for knowledge incorporation and four different models for question-answering using external commonsense knowledge. We analyze our predictions to explore the scope of further improvements.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.