Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Deep Complex Networks for Protocol-Agnostic Radio Frequency Device Fingerprinting in the Wild (1909.08703v1)

Published 18 Sep 2019 in cs.CR and eess.SP

Abstract: Researchers have demonstrated various techniques for fingerprinting and identifying devices. Previous approaches have identified devices from their network traffic or transmitted signals while relying on software or operating system specific artifacts (e.g., predictability of protocol header fields) or characteristics of the underlying protocol (e.g.,frequency offset). As these constraints can be a hindrance in real-world settings, we introduce a practical, generalizable approach that offers significant operational value for a variety of scenarios, including as an additional factor of authentication for preventing impersonation attacks. Our goal is to identify artifacts in transmitted signals that are caused by a device's unique hardware "imperfections" without any knowledge about the nature of the signal. We develop RF-DCN, a novel Deep Complex-valued Neural Network (DCN) that operates on raw RF signals and is completely agnostic of the underlying applications and protocols. We present two DCN variations: (i) Convolutional DCN (CDCN) for modeling full signals, and (ii) Recurrent DCN (RDCN) for modeling time series. Our system handles raw I/Q data from open air captures within a given spectrum window, without knowledge of the modulation scheme or even the carrier frequencies. While our experiments demonstrate the effectiveness of our system, especially under challenging conditions where other neural network architectures break down, we identify additional challenges in signal-based fingerprinting and provide guidelines for future explorations. Our work lays the foundation for more research within this vast and challenging space by establishing fundamental directions for using raw RF I/Q data in novel complex-valued networks.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.