Papers
Topics
Authors
Recent
2000 character limit reached

Galerkin Finite Element Method for Nonlinear Fractional Differential Equations (1909.08295v3)

Published 18 Sep 2019 in math.NA and cs.NA

Abstract: In this paper, we study the existence, regularity, and approximation of the solution for a class of nonlinear fractional differential equations. {In order to do this}, suitable variational formulations are defined for a nonlinear boundary value problems with Riemann-Liouville and Caputo fractional derivatives together with the homogeneous Dirichlet condition. We {investigate} the well-posedness and also the regularity of the corresponding weak solutions. Then, we develop a Galerkin finite element approach {\color{blue}for} the numerical approximation of the weak formulations and {drive a priori error estimates and prove the stability of the schemes}. Finally, some numerical experiments are provided to {demonstrate} the accuracy of the proposed method.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.