Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Global Temporal Representation based CNNs for Infrared Action Recognition (1909.08287v1)

Published 18 Sep 2019 in cs.CV

Abstract: Infrared human action recognition has many advantages, i.e., it is insensitive to illumination change, appearance variability, and shadows. Existing methods for infrared action recognition are either based on spatial or local temporal information, however, the global temporal information, which can better describe the movements of body parts across the whole video, is not considered. In this letter, we propose a novel global temporal representation named optical-flow stacked difference image (OFSDI) and extract robust and discriminative feature from the infrared action data by considering the local, global, and spatial temporal information together. Due to the small size of the infrared action dataset, we first apply convolutional neural networks on local, spatial, and global temporal stream respectively to obtain efficient convolutional feature maps from the raw data rather than train a classifier directly. Then these convolutional feature maps are aggregated into effective descriptors named three-stream trajectory-pooled deep-convolutional descriptors by trajectory-constrained pooling. Furthermore, we improve the robustness of these features by using the locality-constrained linear coding (LLC) method. With these features, a linear support vector machine (SVM) is adopted to classify the action data in our scheme. We conduct the experiments on infrared action recognition datasets InfAR and NTU RGB+D. The experimental results show that the proposed approach outperforms the representative state-of-the-art handcrafted features and deep learning features based methods for the infrared action recognition.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube