Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An NMPC Approach using Convex Inner Approximations for Online Motion Planning with Guaranteed Collision Avoidance (1909.08267v3)

Published 18 Sep 2019 in cs.RO, cs.SY, eess.SY, and math.OC

Abstract: Even though mobile robots have been around for decades, trajectory optimization and continuous time collision avoidance remain subject of active research. Existing methods trade off between path quality, computational complexity, and kinodynamic feasibility. This work approaches the problem using a nonlinear model predictive control (NMPC) framework, that is based on a novel convex inner approximation of the collision avoidance constraint. The proposed Convex Inner ApprOximation (CIAO) method finds kinodynamically feasible and continuous time collision free trajectories, in few iterations, typically one. For a feasible initialization, the approach is guaranteed to find a feasible solution, i.e. it preserves feasibility. Our experimental evaluation shows that CIAO outperforms state of the art baselines in terms of planning efficiency and path quality. Experiments on a robot with 12 states show that it also scales to high-dimensional systems. Furthermore real-world experiments demonstrate its capability of unifying trajectory optimization and tracking for safe motion planning in dynamic environments.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube