Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Diversified Arbitrary Style Transfer via Deep Feature Perturbation (1909.08223v3)

Published 18 Sep 2019 in cs.CV

Abstract: Image style transfer is an underdetermined problem, where a large number of solutions can satisfy the same constraint (the content and style). Although there have been some efforts to improve the diversity of style transfer by introducing an alternative diversity loss, they have restricted generalization, limited diversity and poor scalability. In this paper, we tackle these limitations and propose a simple yet effective method for diversified arbitrary style transfer. The key idea of our method is an operation called deep feature perturbation (DFP), which uses an orthogonal random noise matrix to perturb the deep image feature maps while keeping the original style information unchanged. Our DFP operation can be easily integrated into many existing WCT (whitening and coloring transform)-based methods, and empower them to generate diverse results for arbitrary styles. Experimental results demonstrate that this learning-free and universal method can greatly increase the diversity while maintaining the quality of stylization.

Citations (88)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.