Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual Adversarial Co-Learning for Multi-Domain Text Classification (1909.08203v1)

Published 18 Sep 2019 in cs.LG, cs.IR, and stat.ML

Abstract: In this paper we propose a novel dual adversarial co-learning approach for multi-domain text classification (MDTC). The approach learns shared-private networks for feature extraction and deploys dual adversarial regularizations to align features across different domains and between labeled and unlabeled data simultaneously under a discrepancy based co-learning framework, aiming to improve the classifiers' generalization capacity with the learned features. We conduct experiments on multi-domain sentiment classification datasets. The results show the proposed approach achieves the state-of-the-art MDTC performance.

Citations (24)

Summary

We haven't generated a summary for this paper yet.