Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deterministic algorithms for the Lovasz Local Lemma: simpler, more general, and more parallel (1909.08065v6)

Published 17 Sep 2019 in cs.DS

Abstract: The Lov\'{a}sz Local Lemma (LLL) is a keystone principle in probability theory, guaranteeing the existence of configurations which avoid a collection $\mathcal B$ of "bad" events which are mostly independent and have low probability. In its simplest "symmetric" form, it asserts that whenever a bad-event has probability $p$ and affects at most $d$ bad-events, and $e p d < 1$, then a configuration avoiding all $\mathcal B$ exists. A seminal algorithm of Moser & Tardos (2010) gives nearly-automatic randomized algorithms for most constructions based on the LLL. However, deterministic algorithms have lagged behind. We address three specific shortcomings of the prior deterministic algorithms. First, our algorithm applies to the LLL criterion of Shearer (1985); this is more powerful than alternate LLL criteria and also removes a number of nuisance parameters and leads to cleaner and more legible bounds. Second, we provide parallel algorithms with much greater flexibility in the functional form of of the bad-events. Third, we provide a derandomized version of the MT-distribution, that is, the distribution of the variables at the termination of the MT algorithm. We show applications to non-repetitive vertex coloring, independent transversals, strong coloring, and other problems. These give deterministic algorithms which essentially match the best previous randomized sequential and parallel algorithms.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)