Finding Maximum Edge-Disjoint Paths Between Multiple Terminals (1909.07919v3)
Abstract: Let $G=(V,E)$ be a multigraph with a set $T\subseteq V$ of terminals. A path in $G$ is called a $T$-path if its ends are distinct vertices in $T$ and no internal vertices belong to $T$. In 1978, Mader showed a characterization of the maximum number of edge-disjoint $T$-paths. In this paper, we provide a combinatorial, deterministic algorithm for finding the maximum number of edge-disjoint $T$-paths. The algorithm adopts an augmenting path approach. More specifically, we utilize a new concept of short augmenting walks in auxiliary labeled graphs to capture a possible augmentation of the number of edge-disjoint $T$-paths. To design a search procedure for a short augmenting walk, we introduce blossoms analogously to the matching algorithm of Edmonds (1965). When the search procedure terminates without finding a short augmenting walk, the algorithm provides a certificate for the optimality of the current edge-disjoint $T$-paths. From this certificate, one can obtain the Edmonds--Gallai type decomposition introduced by Seb\H{o} and Szeg\H{o} (2004). The algorithm runs in $O(|E|2)$ time, which is much faster than the best known deterministic algorithm based on a reduction to linear matroid parity. We also present a strongly polynomial algorithm for the maximum integer free multiflow problem, which asks for a nonnegative integer combination of $T$-paths maximizing the sum of the coefficients subject to capacity constraints on the edges.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.