Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Finding Maximum Edge-Disjoint Paths Between Multiple Terminals (1909.07919v3)

Published 10 Sep 2019 in cs.DS and cs.DM

Abstract: Let $G=(V,E)$ be a multigraph with a set $T\subseteq V$ of terminals. A path in $G$ is called a $T$-path if its ends are distinct vertices in $T$ and no internal vertices belong to $T$. In 1978, Mader showed a characterization of the maximum number of edge-disjoint $T$-paths. In this paper, we provide a combinatorial, deterministic algorithm for finding the maximum number of edge-disjoint $T$-paths. The algorithm adopts an augmenting path approach. More specifically, we utilize a new concept of short augmenting walks in auxiliary labeled graphs to capture a possible augmentation of the number of edge-disjoint $T$-paths. To design a search procedure for a short augmenting walk, we introduce blossoms analogously to the matching algorithm of Edmonds (1965). When the search procedure terminates without finding a short augmenting walk, the algorithm provides a certificate for the optimality of the current edge-disjoint $T$-paths. From this certificate, one can obtain the Edmonds--Gallai type decomposition introduced by Seb\H{o} and Szeg\H{o} (2004). The algorithm runs in $O(|E|2)$ time, which is much faster than the best known deterministic algorithm based on a reduction to linear matroid parity. We also present a strongly polynomial algorithm for the maximum integer free multiflow problem, which asks for a nonnegative integer combination of $T$-paths maximizing the sum of the coefficients subject to capacity constraints on the edges.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.