Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast Search with Poor OCR (1909.07899v3)

Published 17 Sep 2019 in cs.IR and cs.DL

Abstract: The indexing and searching of historical documents have garnered attention in recent years due to massive digitization efforts of important collections worldwide. Pure textual search in these corpora is a problem since optical character recognition (OCR) is infamous for performing poorly on such historical material, which often suffer from poor preservation. We propose a novel text-based method for searching through noisy text. Our system represents words as vectors, projects queries and candidates obtained from the OCR into a common space, and ranks the candidates using a metric suited to nearest-neighbor search. We demonstrate the practicality of our method on typewritten German documents from the WWII era.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.