Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Black-Box Adversarial Examples for Text Classifiers Using a Deep Reinforced Model (1909.07873v1)

Published 17 Sep 2019 in cs.LG, cs.CL, cs.IR, and stat.ML

Abstract: Recently, generating adversarial examples has become an important means of measuring robustness of a deep learning model. Adversarial examples help us identify the susceptibilities of the model and further counter those vulnerabilities by applying adversarial training techniques. In natural language domain, small perturbations in the form of misspellings or paraphrases can drastically change the semantics of the text. We propose a reinforcement learning based approach towards generating adversarial examples in black-box settings. We demonstrate that our method is able to fool well-trained models for (a) IMDB sentiment classification task and (b) AG's news corpus news categorization task with significantly high success rates. We find that the adversarial examples generated are semantics-preserving perturbations to the original text.

Citations (34)

Summary

We haven't generated a summary for this paper yet.