Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Active Learning for Risk-Sensitive Inverse Reinforcement Learning (1909.07843v2)

Published 14 Sep 2019 in cs.LG, cs.RO, and stat.ML

Abstract: One typical assumption in inverse reinforcement learning (IRL) is that human experts act to optimize the expected utility of a stochastic cost with a fixed distribution. This assumption deviates from actual human behaviors under ambiguity. Risk-sensitive inverse reinforcement learning (RS-IRL) bridges such gap by assuming that humans act according to a random cost with respect to a set of subjectively distorted distributions instead of a fixed one. Such assumption provides the additional flexibility to model human's risk preferences, represented by a risk envelope, in safe-critical tasks. However, like other learning from demonstration techniques, RS-IRL could also suffer inefficient learning due to redundant demonstrations. Inspired by the concept of active learning, this research derives a probabilistic disturbance sampling scheme to enable an RS-IRL agent to query expert support that is likely to expose unrevealed boundaries of the expert's risk envelope. Experimental results confirm that our approach accelerates the convergence of RS-IRL algorithms with lower variance while still guaranteeing unbiased convergence.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.