Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning to Find Hydrological Corrections (1909.07685v1)

Published 17 Sep 2019 in cs.CV and cs.CY

Abstract: High resolution Digital Elevation models, such as the (Big) grid terrain model of Denmark with more than 200 billion measurements, is a basic requirement for water flow modelling and flood risk analysis. However, a large number of modifications often need to be made to even very accurate terrain models, such as the Danish model, before they can be used in realistic flow modeling. These modifications include removal of bridges, which otherwise will act as dams in flow modeling, and inclusion of culverts that transport water underneath roads. In fact, the danish model is accompanied by a detailed set of hydrological corrections for the digital elevation model. However, producing these hydrological corrections is a very slow an expensive process, since it is to a large extent done manually and often with local input. This also means that corrections can be of varying quality. In this paper we propose a new algorithmic apporach based on machine learning and convolutional neural networks for automatically detecting hydrological corrections for such large terrain data. Our model is able to detect most hydrological corrections known for the danish model and quite a few more that should have been included in the original list.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.