Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Z-Net: an Anisotropic 3D DCNN for Medical CT Volume Segmentation (1909.07480v2)

Published 16 Sep 2019 in eess.IV, cs.CV, cs.LG, and stat.ML

Abstract: Accurate volume segmentation from the Computed Tomography (CT) scan is a common prerequisite for pre-operative planning, intra-operative guidance and quantitative assessment of therapeutic outcomes in robot-assisted Minimally Invasive Surgery (MIS). 3D Deep Convolutional Neural Network (DCNN) is a viable solution for this task, but is memory intensive. Small isotropic patches are cropped from the original and large CT volume to mitigate this issue in practice, but it may cause discontinuities between the adjacent patches and severe class-imbalances within individual sub-volumes. This paper presents a new 3D DCNN framework, namely Z-Net, to tackle the discontinuity and class-imbalance issue by preserving a full field-of-view of the objects in the XY planes using anisotropic spatial separable convolutions. The proposed Z-Net can be seamlessly integrated into existing 3D DCNNs with isotropic convolutions such as 3D U-Net and V-Net, with improved volume segmentation Intersection over Union (IoU) - up to $12.6\%$. Detailed validation of Z-Net is provided for CT aortic, liver and lung segmentation, demonstrating the effectiveness and practical value of Z-Net for intra-operative 3D navigation in robot-assisted MIS.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.