Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Z-Net: an Anisotropic 3D DCNN for Medical CT Volume Segmentation (1909.07480v2)

Published 16 Sep 2019 in eess.IV, cs.CV, cs.LG, and stat.ML

Abstract: Accurate volume segmentation from the Computed Tomography (CT) scan is a common prerequisite for pre-operative planning, intra-operative guidance and quantitative assessment of therapeutic outcomes in robot-assisted Minimally Invasive Surgery (MIS). 3D Deep Convolutional Neural Network (DCNN) is a viable solution for this task, but is memory intensive. Small isotropic patches are cropped from the original and large CT volume to mitigate this issue in practice, but it may cause discontinuities between the adjacent patches and severe class-imbalances within individual sub-volumes. This paper presents a new 3D DCNN framework, namely Z-Net, to tackle the discontinuity and class-imbalance issue by preserving a full field-of-view of the objects in the XY planes using anisotropic spatial separable convolutions. The proposed Z-Net can be seamlessly integrated into existing 3D DCNNs with isotropic convolutions such as 3D U-Net and V-Net, with improved volume segmentation Intersection over Union (IoU) - up to $12.6\%$. Detailed validation of Z-Net is provided for CT aortic, liver and lung segmentation, demonstrating the effectiveness and practical value of Z-Net for intra-operative 3D navigation in robot-assisted MIS.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.