Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

A Karhunen-Loeve expansion for one-mode open quantum harmonic oscillators using the eigenbasis of the two-point commutator kernel (1909.07377v1)

Published 16 Sep 2019 in quant-ph, cs.SY, eess.SY, math-ph, math.MP, math.OC, and math.PR

Abstract: This paper considers one-mode open quantum harmonic oscillators with a pair of conjugate position and momentum variables driven by vacuum bosonic fields according to a linear quantum stochastic differential equation. Such systems model cavity resonators in quantum optical experiments. Assuming that the quadratic Hamiltonian of the oscillator is specified by a positive definite energy matrix, we consider a modified version of the quantum Karhunen-Loeve expansion of the system variables proposed recently. The expansion employs eigenvalues and eigenfunctions of the two-point commutator kernel for linearly transformed system variables. We take advantage of the specific structure of this eigenbasis in the one-mode case (including its connection with the classical Ornstein-Uhlenbeck process). These results are applied to computing quadratic-exponential cost functionals which provide robust performance criteria for risk-sensitive control of open quantum systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.