Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hierarchic Neighbors Embedding (1909.07142v1)

Published 16 Sep 2019 in cs.LG and stat.ML

Abstract: Manifold learning now plays a very important role in machine learning and many relevant applications. Although its superior performance in dealing with nonlinear data distribution, data sparsity is always a thorny knot. There are few researches to well handle it in manifold learning. In this paper, we propose Hierarchic Neighbors Embedding (HNE), which enhance local connection by the hierarchic combination of neighbors. After further analyzing topological connection and reconstruction performance, three different versions of HNE are given. The experimental results show that our methods work well on both synthetic data and high-dimensional real-world tasks. HNE develops the outstanding advantages in dealing with general data. Furthermore, comparing with other popular manifold learning methods, the performance on sparse samples and weak-connected manifolds is better for HNE.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube