Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

TextSR: Content-Aware Text Super-Resolution Guided by Recognition (1909.07113v4)

Published 16 Sep 2019 in cs.CV

Abstract: Scene text recognition has witnessed rapid development with the advance of convolutional neural networks. Nonetheless, most of the previous methods may not work well in recognizing text with low resolution which is often seen in natural scene images. An intuitive solution is to introduce super-resolution techniques as pre-processing. However, conventional super-resolution methods in the literature mainly focus on reconstructing the detailed texture of natural images, which typically do not work well for text due to the unique characteristics of text. To tackle these problems, in this work, we propose a content-aware text super-resolution network to generate the information desired for text recognition. In particular, we design an end-to-end network that can perform super-resolution and text recognition simultaneously. Different from previous super-resolution methods, we use the loss of text recognition as the Text Perceptual Loss to guide the training of the super-resolution network, and thus it pays more attention to the text content, rather than the irrelevant background area. Extensive experiments on several challenging benchmarks demonstrate the effectiveness of our proposed method in restoring a sharp high-resolution image from a small blurred one, and show that the recognition performance clearly boosts up the performance of text recognizer. To our knowledge, this is the first work focusing on text super-resolution. Code will be released in https://github.com/xieenze/TextSR.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.