A fast implicit difference scheme for solving the generalized time-space fractional diffusion equations with variable coefficients (1909.07064v7)
Abstract: In this paper, we first propose an unconditionally stable implicit difference scheme for solving generalized time-space fractional diffusion equations (GTSFDEs) with variable coefficients. The numerical scheme utilizes the $L1$-type formula for the generalized Caputo fractional derivative in time discretization and the second-order weighted and shifted Gr\"{u}nwald difference (WSGD) formula in spatial discretization, respectively. Theoretical results and numerical tests are conducted to verify the $(2 - \gamma)$-order and 2-order of temporal and spatial convergence with $\gamma\in(0,1)$ the order of Caputo fractional derivative, respectively. The fast sum-of-exponential approximation of the generalized Caputo fractional derivative and Toeplitz-like coefficient matrices are also developed to accelerate the proposed implicit difference scheme. Numerical experiments show the effectiveness of the proposed numerical scheme and its good potential for large-scale simulation of GTSFDEs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.