Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Self-Attentional Neural Architecture for Code Completion with Multi-Task Learning (1909.06983v3)

Published 16 Sep 2019 in cs.SE and cs.AI

Abstract: Code completion, one of the most useful features in the Integrated Development Environments (IDEs), can accelerate software development by suggesting the libraries, APIs, and method names in real-time. Recent studies have shown that statistical LLMs can improve the performance of code completion tools through learning from large-scale software repositories. However, these models suffer from three major drawbacks: a) The hierarchical structural information of the programs is not fully utilized in the program's representation; b) In programs, the semantic relationships can be very long. Existing recurrent neural networks based LLMs are not sufficient to model the long-term dependency. c) Existing approaches perform a specific task in one model, which leads to the underuse of the information from related tasks. To address these challenges, in this paper, we propose a self-attentional neural architecture for code completion with multi-task learning. To utilize the hierarchical structural information of the programs, we present a novel method that considers the path from the predicting node to the root node. To capture the long-term dependency in the input programs, we adopt a self-attentional architecture based network as the base LLM. To enable the knowledge sharing between related tasks, we creatively propose a Multi-Task Learning (MTL) framework to learn two related tasks in code completion jointly. Experiments on three real-world datasets demonstrate the effectiveness of our model when compared with state-of-the-art methods.

Citations (70)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.