Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 83 tok/s
Gemini 2.5 Flash 150 tok/s Pro
Gemini 2.5 Pro 48 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Self-Attentional Neural Architecture for Code Completion with Multi-Task Learning (1909.06983v3)

Published 16 Sep 2019 in cs.SE and cs.AI

Abstract: Code completion, one of the most useful features in the Integrated Development Environments (IDEs), can accelerate software development by suggesting the libraries, APIs, and method names in real-time. Recent studies have shown that statistical LLMs can improve the performance of code completion tools through learning from large-scale software repositories. However, these models suffer from three major drawbacks: a) The hierarchical structural information of the programs is not fully utilized in the program's representation; b) In programs, the semantic relationships can be very long. Existing recurrent neural networks based LLMs are not sufficient to model the long-term dependency. c) Existing approaches perform a specific task in one model, which leads to the underuse of the information from related tasks. To address these challenges, in this paper, we propose a self-attentional neural architecture for code completion with multi-task learning. To utilize the hierarchical structural information of the programs, we present a novel method that considers the path from the predicting node to the root node. To capture the long-term dependency in the input programs, we adopt a self-attentional architecture based network as the base LLM. To enable the knowledge sharing between related tasks, we creatively propose a Multi-Task Learning (MTL) framework to learn two related tasks in code completion jointly. Experiments on three real-world datasets demonstrate the effectiveness of our model when compared with state-of-the-art methods.

Citations (70)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.