Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Off-road Autonomous Vehicles Traversability Analysis and Trajectory Planning Based on Deep Inverse Reinforcement Learning (1909.06953v2)

Published 16 Sep 2019 in cs.RO and cs.LG

Abstract: Terrain traversability analysis is a fundamental issue to achieve the autonomy of a robot at off-road environments. Geometry-based and appearance-based methods have been studied in decades, while behavior-based methods exploiting learning from demonstration (LfD) are new trends. Behavior-based methods learn cost functions that guide trajectory planning in compliance with experts' demonstrations, which can be more scalable to various scenes and driving behaviors. This research proposes a method of off-road traversability analysis and trajectory planning using Deep Maximum Entropy Inverse Reinforcement Learning. To incorporate vehicle's kinematics while solving the problem of exponential increase of state-space complexity, two convolutional neural networks, i.e., RL ConvNet and Svf ConvNet, are developed to encode kinematics into convolution kernels and achieve efficient forward reinforcement learning. We conduct experiments in off-road environments. Scene maps are generated using 3D LiDAR data, and expert demonstrations are either the vehicle's real driving trajectories at the scene or synthesized ones to represent specific behaviors such as crossing negative obstacles. Different cost functions of traversability analysis are learned and tested at various scenes of capability in guiding the trajectory planning of different behaviors. We also demonstrate the performance and computation efficiency of the proposed method.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.