Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Many-to-Many Voice Conversion using Cycle-Consistent Variational Autoencoder with Multiple Decoders (1909.06805v4)

Published 15 Sep 2019 in eess.AS and cs.CL

Abstract: One of the obstacles in many-to-many voice conversion is the requirement of the parallel training data, which contain pairs of utterances with the same linguistic content spoken by different speakers. Since collecting such parallel data is a highly expensive task, many works attempted to use non-parallel training data for many-to-many voice conversion. One of such approaches is using the variational autoencoder (VAE). Though it can handle many-to-many voice conversion without the parallel training, the VAE based voice conversion methods suffer from low sound qualities of the converted speech. One of the major reasons is because the VAE learns only the self-reconstruction path. The conversion path is not trained at all. In this paper, we propose a cycle consistency loss for VAE to explicitly learn the conversion path. In addition, we propose to use multiple decoders to further improve the sound qualities of the conventional VAE based voice conversion methods. The effectiveness of the proposed method is validated using objective and the subjective evaluations.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.