Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Communication-Censored Linearized ADMM for Decentralized Consensus Optimization (1909.06724v1)

Published 15 Sep 2019 in math.OC and stat.ML

Abstract: In this paper, we propose a communication- and computation-efficient algorithm to solve a convex consensus optimization problem defined over a decentralized network. A remarkable existing algorithm to solve this problem is the alternating direction method of multipliers (ADMM), in which at every iteration every node updates its local variable through combining neighboring variables and solving an optimization subproblem. The proposed algorithm, called as COmmunication-censored Linearized ADMM (COLA), leverages a linearization technique to reduce the iteration-wise computation cost of ADMM and uses a communication-censoring strategy to alleviate the communication cost. To be specific, COLA introduces successive linearization approximations to the local cost functions such that the resultant computation is first-order and light-weight. Since the linearization technique slows down the convergence speed, COLA further adopts the communication-censoring strategy to avoid transmissions of less informative messages. A node is allowed to transmit only if the distance between the current local variable and its previously transmitted one is larger than a censoring threshold. COLA is proven to be convergent when the local cost functions have Lipschitz continuous gradients and the censoring threshold is summable. When the local cost functions are further strongly convex, we establish the linear (sublinear) convergence rate of COLA, given that the censoring threshold linearly (sublinearly) decays to 0. Numerical experiments corroborate with the theoretical findings and demonstrate the satisfactory communication-computation tradeoff of COLA.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.