Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Deep Robotic Prediction with hierarchical RGB-D Fusion (1909.06585v2)

Published 14 Sep 2019 in cs.RO and cs.CV

Abstract: Robotic arm grasping is a fundamental operation in robotic control task goals. Most current methods for robotic grasping focus on RGB-D policy in the table surface scenario or 3D point cloud analysis and inference in the 3D space. Comparing to these methods, we propose a novel real-time multimodal hierarchical encoder-decoder neural network that fuses RGB and depth data to realize robotic humanoid grasping in 3D space with only partial observation. The quantification of raw depth data's uncertainty and depth estimation fusing RGB is considered. We develop a general labeling method to label ground-truth on common RGB-D datasets. We evaluate the effectiveness and performance of our method on a physical robot setup and our method achieves over 90\% success rate in both table surface and 3D space scenarios.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.