Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Universal Parent Model for Low-Resource Neural Machine Translation Transfer (1909.06516v2)

Published 14 Sep 2019 in cs.CL

Abstract: Transfer learning from a high-resource language pair parent' has been proven to be an effective way to improve neural machine translation quality for low-resource language pairschildren.' However, previous approaches build a custom parent model or at least update an existing parent model's vocabulary for each child language pair they wish to train, in an effort to align parent and child vocabularies. This is not a practical solution. It is wasteful to devote the majority of training time for new language pairs to optimizing parameters on an unrelated data set. Further, this overhead reduces the utility of neural machine translation for deployment in humanitarian assistance scenarios, where extra time to deploy a new language pair can mean the difference between life and death. In this work, we present a `universal' pre-trained neural parent model with constant vocabulary that can be used as a starting point for training practically any new low-resource language to a fixed target language. We demonstrate that our approach, which leverages orthography unification and a broad-coverage approach to subword identification, generalizes well to several languages from a variety of families, and that translation systems built with our approach can be built more quickly than competing methods and with better quality as well.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube